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1 Practical information

1.1 Location

The conference will take place at Pfaffenwaldring 5a on the
campus in 70569 Vaihingen. It can be reached by S1, S2,
S3 from either Stuttgart central station as well as the airport
(use exit ”Universität”). From the S-Bahn stop, please follow
the provided sketch to get to the SimTech building (Pfaffen-
waldring 5a). The conference takes place on the ground floor
in room 0.009.

1.2 Talks

Each talk will last 30 minutes, 20 minutes for the presentation and 10 minutes for the subsequent
discussion. You can use your own laptop or one that we provide.

1.3 Conference dinner

The conference dinner will take place on Thursday March 7, 2024 at Brauhaus Schönbuch, Bolzstraße
10, 70173 Stuttgart.

1.4 Excursion

A short hike is planned for the excursion. Please remember to wear appropriate clothing.

1.5 Local organizers

• Tobias Ehring (IANS), University of Stuttgart, tobias.ehring@ians.uni-stuttgart.de

• Robin Herkert (IANS), University of Stuttgart, robin.herkert@ians.uni-stuttgart.de

• Sanath Keshav (DAE), University of Stuttgart, keshav@mib.uni-stuttgart.de

• Jonas Kneifl (ITM), University of Stuttgart, jonas.kneifl@itm.uni-stuttgart.de

• Dr. Mattia Manucci (SimTech), University of Stuttgart, mattia.manucci@simtech.uni-stuttgart.de

• Jonas Nicodemus (SimTech), University of Stuttgart, jonas.nicodemus@simtech.uni-stuttgart.de
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1.6 Wifi access

Guest Access (Open WiFi)

Open WiFi guest access

ESSID: uni-stuttgart-open

eduroam for Uni Stuttgart

Staff and students can configure eduroam
on their devices using the profiles from
https://uni-stuttgart.de/eduroam
to connect to:

ESSID: eduroam

Technical Support Desk

Support:
support@tik.uni-stuttgart.de

Service desk:
https://uni-stuttgart.de/tikbera
+49 711 685-88000

By connecting to the University's networks you acknowledge that you have read, understood
and agree to the terms and conditions available at https://uni-stuttgart.de/iuk-en

Apple App store Google Play store

We also support OpenRoaming!
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2 Scientific Program

Monday, March 4, 2024
09:00–10:00 Registration
10:00–10:30 Welcome
10:30–11:00 Coffee Break
11:00–11:30 Robin Herkert & Tobias Ehring

Introduction to reduced basis methods
11:30–12:00 Jonas Nicodemus

Introduction to system theoretic model order reduction
12:00–12:30 Jonas Kneifl

Introduction to data-driven model order reduction and surrogate modeling
12:30–14:00 Lunch Break
14:00–14:30 Tobias Ehring

Data-driven structure preserving model order reduction for high-dimensional nonlinear op-
timal control problems

14:30–15:00 Lukas Renelt
Efficient linear model order reduction for Friedrichs’systems

15:00–15:30 Nina Beranek
A hybrid mixed variational formulation and discretization for the linear transport equation

15:30–16:00 Coffee Break
16:00–16:30 Hongliang Mu

Piece-wise symplectic model reduction on quadratically embedded manifolds
16:30–17:00 Alexander Reinhold

Semi-smooth Newton method for parabolic PDE-constrained optimization
17:00– Ice breaking

Tuesday, March 5, 2024
09:00–09:30 Hendrik Fischer

MORe DWR applied to manifold learning
09:30–10:00 Michael Kartmann

Adaptive reduced basis trust region methods for parameter identification problems
10:00–10:30 Niklas Reich

A parallel batch greedy algorithm in reduced basis methods: Convergence rates and numer-
ical results

10:30–11:00 Coffee Break
11:00–11:30 Fatima Bouyghf

Tensor Krylov subspace methods via the T-product for large Sylvester tensor equations
11:30–12:00 Julian Roth

Adaptive space-time model order reduction with dual-weighted residual (MORe DWR) error
control for poroelasticity

12:00–12:30 Giulia Sambataro
A nonlinear reduced basis approximation of discrete contact problems in crowd motion

12:30–14:00 Lunch Break
14:00–14:30 Alessandro Borghi

Extending balanced truncation to general domains
14:30–15:00 Sean Reiter

H2-optimal model reduction of linear systems with quadratic outputs
15:00–15:30 Jan Rohleff

Finite-dimensional RHC Control of linear time-varying parabolic parabolic PDEs: Stability
analysis and model order reduction

15:30–16:00 Coffee Break
16:00–16:30 Antonio Carlucci

Generalized transfer function approximation for nonlinear MOR
16:30–17:00 Reetish Padhi

Quadrature-based balanced truncation for quadratic-bilinear systems
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Wednesday, March 6, 2024
09:00–09:30 A. Pashov

Model order reduction techniques for the prediction of railway induced vibration
09:30–10:00 Andrés Ortegón-Villacorte

Proper Orthogonal Decomposition for port-Hamiltonian energy networks
10:00–10:30 Sven Ullmann

Kernel trust-region algorithm for solving optimization problems
10:30–11:00 Coffee Break
11:00–11:30 Mattia Manucci

Approximating the smallest eigenvalue of large Hermitian matrices that depend on param-
eters

11:30–12:00 Constantin Greif
The KolmogorovN -width for linear transport: Exact representation and the influence of the
data

12:00–12:30 Niklas Hornischer
Active subspace methods for parametrized partial differential equations

12:30–14:00 Lunch Break
14:00– Excursion

Thursday, March 7, 2024
09:00–09:30 Michael Ackermann

Frequency-domain based learning of dynamical systems from purely time-domain data
09:30–10:00 Jannis Marquardt

Reformulation of the data assimilation problem as a new foundation for model order reduc-
tion methods

10:00–10:30 Fan Wang
Model order reduction techniques for multiscale systems

10:30–11:00 Coffee Break
11:00–11:30 Ivan Prusak

An optimisation–based Fully segregated reduced order model for fluid structure interaction
problems

11:30–12:00 Pierfrancesco Siena
Reduced order models for cardiovascular flows

12:00–12:30 Lennart Frie
Model order reduction for partitioned linear FSI systems

12:30–14:00 Lunch Break
14:00–14:30 Johannes Rettberg

Structure-preserving model order reduction and error analysis of port-Hamiltonian systems
14:30–15:00 Leonidas Gkimisis

Non-intrusive reduced-order modeling challenges for Fluid-Structure Interaction problems
15:00–15:30 Amna Mohsin Hassan Abdalla

Wasserstein-VAEs in Monte Carlo simulations
15:30–16:00 Coffee Break
16:00–16:30 Art Pelling

Data-driven and low-rank implementations of the generalized singular perturbation algo-
rithm

16:30–17:00 Thomas Trigo Trindade
Stabilised dynamical low rank methods for random advection-dominated problems

Friday, March 8, 2024
09:00–09:30 Alexandre Pasco

Sequential nonlinear dimension reduction using gradient evaluations
09:30–10:00 Anna Ivagnes

Enhancing non-intrusive reduced ordermethodswith space-dependent aggregationmodels
10:00–10:30 Max Beckermann

Combining a priori model order reduction and Lagrangian fluid solvers withmovingmeshes
10:30–11:00 Coffee Break
11:00–11:30 Hendrik Kleikamp

Be greedy and learn: Efficient and certified algorithms for parameterized optimal control
problems

11:30–12:30 Julia Pelzer & Lukas Piller
Optimizing groundwater heat pump placement: Extending heat plumes with CNNs and
PINNs

12:30–14:00 Lunch Break
14:00–14:30 Closing
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4 Scientific Program - Day 1

4.1 Data-driven structure preserving model order reduction for high-dimensional
nonlinear optimal control problems

T. Ehring1, P. Buchfink1, and B. Haasdonk1
1: Institute of Applied Analysis and Numerical Simulation, University of Stuttgart

Model Predictive Control (MPC) [5] is a model-based feedback control method for both, linear and
nonlinear control systems, with the goal of closed-loop stability. The feedback law of an MPC con-
trol system is based on the iterative evaluation of finite-horizon optimal control problems (OCPs) for
regularly updated initial values x. In the scope of the current study, the OCP is of the form

min
u∈UT

JT (u) = min
u∈UT

∫ T

0

r(x(s)) + u(s)⊤Ru(s)ds+ V (x(T )) (1)

subject to ẋ(s) = f(x(s)) + g(x(s))u(s) and x(0) = x ∈ RN . (2)

Using the first-order optimal conditions of this system, called the Pontryagin Maximum Principle
(PMP) [4], the optimal open-loop trajectory x∗

T ( · ) is guaranteed to be the solution of a Hamiltonian
two-point boundary value problem of the form

ż∗T (s) = J2N∇zH (z∗T ) with b(z∗T (0), z∗T (T );x) = 0. (3)

Here z∗T (s) :=
[

x∗
T (s)

⊤ p∗
T (s)

⊤ ]⊤ ∈ R2N with p∗
T ( · ) being the co-state. Solving (1)–(2) via the PMP

conditions leads to anMPC procedurewhere (3)must be solvedmultiple timeswith x being the current
initial state. The solution generation of (3) should therefore be fast, especially for nonlinear high-
dimensional systems, which is one of the major challenges of real-time capable MPC. This is where
model order reduction can be used to find a quickly computable approximate solution of (3). Since the
latter is a Hamiltonian system, symplectic model reduction [3, 1] can be applied, which preserves the
Hamiltonian structure throughout the reduction, resulting in a reduced Hamiltonian that guarantees
again preservation of the energy. We compare four symplectic and non-symplectic data-based bases,
including a new type of base we call biorthoSymp, in terms of their ability to generate near-optimal
controls by using them to solve a reduced version of (3). Numerical tests are performed on a nonlinear
heat equation of the Zeldovich type describing a combustion process, where the optimal control steers
the system towards the constant zero solution. A more detailed description can be found in [2].

References

[1] P. Buchfink, A. Bhatt, and B. Haasdonk. “Symplectic Model Order Reduction with Non-
Orthonormal Bases”. In: Mathematical and Computational Applications 24.2 (2019), p. 43.

[2] T. Ehring and B. Haasdonk. “Greedy Sampling and Approximation for Realizing Feedback Control
for High Dimensional Nonlinear Systems”. In: IFAC-PapersOnLine 55.20 (2022), pp. 325–330.

[3] L. Peng and K. Mohseni. “Symplectic Model Reduction of Hamiltonian Systems”. In: SIAM Journal
on Scientific Computing 38.1 (2016), A1–A27.

[4] L. S. Pontryagin. Mathematical Theory of Optimal Processes. CRC Press, 1987.

[5] J. B. Rawlings. “Tutorial Overview of Model Predictive Control”. In: IEEE Control Systems Magazine
20.3 (2000), pp. 38–52.
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4.2 Efficient linear Model Order Reduction for Friedrichs’ systems

Lukas Renelt 1, Christian Engwer 1, Mario Ohlberger1
1: Institute for Analysis and Numerics, University of Münster

We will discuss the class of linear Friedrichs’ systems [1], defined as

Au :=

d∑
i=1

Ai ∂u

∂xi
+ Cu, Ai ∈ [L∞(Ω)]m×m

sym ,

and the corresponding PDE-problem Au = f . Many classic partial differential equations (PDEs)
can be rewritten in this form, for example diffusion problems, linear advection, linear elasticity, sta-
tionary Maxwell etc. We are interested in parametrized Friedrichs’ systems and in particular the ap-
proximability (in the sense of Kolmogorov) of their solution set. While under certain conditions an
exponential decrease of the Kolomogorov N -width (i.e. good approximability) is known for diffu-
sion problems, slowly decreasing lower bounds have been shown for e.g. parametrized transport
fields [OhlbergerRave]. We do not aim to tackle the latter problem (here, one should consider nonlin-
ear approaches, see e.g. [3]) but instead aim to identify the subclass of linearly approximable Friedrichs’
systems.

Using the theory of optimal test functions, we derive conditions under which solutions to Friedrichs’
systems can be exponentially approximated [2]. We apply our result to an application-driven model
problemwhich is based on an advection-reaction equation with parametrized reaction coefficient. The
advection field is obtained as the solution to i.e. the Darcy equation (porousmedia), the Navier-Stokes-
equation (turbulent flow) or even given as real-life data. Numerical experiments where we construct
reduced spaces with a greedy-type algorithm confirm the exponential decrease of the approximation
error.
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4.3 A hybridmixed variational formulation and discretization for the linear transport
equation

Nina Beranek 1

1: Ulm University, Institute of Numerical Mathematics, Germany

This work is concerned with the theoretical study of a hybrid mixed variational formulation of the
linear transport equation. A stable finite element discretization for the hybridized mixed problem is
developed.

Firstly, we derive the mixed variational formulation based on the ideas of [2]. Based on the inf-sup
stability of the involved bilinear forms, we show the formulation to be well-posed.

Secondly, we analyse the problem and the involved function spaces in case of a domain decompo-
sition. It turns out that the interelement jumps of the normal components of the solution need to
be controlled in order to guarantee the required regularity of the solution. Following hybridization
techniques, see e.g. [1], we weaken the interelement continuity constraints by introducing a Lagrange
multiplier.

Thirdly, we come up with a suitable finite element discretization for the hybridized mixed problem.
Following the approach of [2], a slightly modified version of Raviart-Thomas elements of zeroth order
are used for one of the unknowns. The proof of well-posedness of the problem in the chosen discrete
spaces is part of our ongoing work.
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4.4 Piece-wise Symplectic Model Reduction on Quadratically Embedded Manifolds

H. Mu1, S. Glas1
1: University of Twente

In this work, we present a piece-wise symplectic model order reduction (MOR) method for Hamil-
tonian systems on quadratically embedded manifolds. For Hamiltonian systems, which suffer from
slowly decaying Kolmogorov N-widths, linear-subspace reduced order models (ROMs) of low dimen-
sion can have insufficient accuracy. The recently proposed symplectic manifold Galerkin projection
combined with the quadratic manifold cotangent lift approximation (SMG-QMCL)[1] is a symplectic
MOR method that achieves higher accuracy than linear-subspace symplectic MOR methods. In this
paper, we improve the efficiency of the SMG-QMCL by proposing a piece-wise symplectic MOR ap-
proach. First, the QMCLmap is approximated piece-wisely by a linear symplecticmap on each discrete
time-interval. Then the symplectic Galerkin projection is applied to obtain a series of reduced-order
Hamiltonian systems. In case that the Hamiltonian of the full-order model is a polynomial, the series
of the Hamiltonians of the ROMs can be preserved up to a multiple of a pre-given tolerance used in
the Newton iteration. In the numerical example, we demonstrate the approximation quality and the
energy-preservation of the proposed algorithm.
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4.5 Semi-smooth Newton Method for parabolic PDE-constraint Optimization

M. A. Reinhold1, K. Urban1
1: Institute of Numerical Mathematics, Ulm University

The solution of optimization problems constrained by parabolic PDEs is highly relevant for a wide
range of applications and an interesting ongoing research subject. The usual approach to numerically
solve these problems is to apply time stepping schemes to the PDE and the arising adjoint equation.
In our approach we utilize a space-time variational formulation, using Lebesgue-Bochner spaces. We
formulate the PDE-constraint optimization problem within this framework and use a tensor type dis-
cretizations with finite elements in time and space.

Since we consider additional constraints to the control term, we will use a semi-smooth Newton
method to solve the problem. In this talk we want to discuss the derivation of the arising Newton
systems in our setting. Here we want to discuss the differences between a discretize-before-optimize
(DBO) and the optimize-before-discretize (OBD) approach. A comparison of the Newton like method
in our Petrov-Galerkin setting with the Galerkin setting of an elliptic problem is discussed as well.

An implementation of both approaches will be presented, this implementation is supposed to be the
truth solver for a parameterized version of our problem. In an outlook we will discuss a parameterized
problem, where wewill discuss the case with andwithout control constraints. Wewill present chances
and challenges for the possibilities for Model Order Reduction (MOR) techniques for these problem as
well as preliminary results of ongoing work.

13



3rd YMMOR Conference, March 4-8, 2024

5 Scientific Program - Day 2

5.1 MORe DWR applied to Manifold Learning

Hendrik Fischer 1,2, Thomas Wick1,2,
1: Leibniz Universität Hannover, Institute of Applied Mathematics, Germany
2: Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay LMPS - Laboratoire deMecanique Paris-
Saclay, France

This presentation extends the MORe DWR method [3, 2] to parametrized problems. The MORe
DWR method is an incremental, adaptive, goal-oriented reduced order modeling approach
for time-dependent problems utilizing a posteriori dual-weighted residual (DWR) based error
estimates [1]. The method has been successfully applied to various problems, such as the heat
and elastodynamics equations [3] and lately to multiphysics problems, e.g. poroelasticity [2].
Here, the reduced bases have been altered adaptively based on the measured changes in solution
behavior. This presented work innovates by introducing a parametrization to the MORe DWR
method, expanding its applicability in reduced order modeling. Since the MORe DWR method tailors
the bases to new solution behavior in a time-trajectory, we extend this property to solution changes
caused by an underlying parametrization. For this parameter- and time-dependent problems, we are
using the POD Greedy Sampling algorithm [4] as a foundation and combining it with the MORe DWR
basis enrichment. The aim is to obtain a framework that can be used to explore the solution manifold
in the offline phase of reduced order modeling, while also keeping the computational costs to a
minimum. We introduce two strategies for the decision-making in the greedy enrichment. Further,
we test the methods on the heat equation with parametrized heat coefficients and compare both
approaches to the classical POD Greedy Sampling algorithm. The performance indicators used are
the wall clock time, the accuracy of the estimator, and the quality of the resulting reduced basis.
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5.2 Adaptive Reduced Basis Trust Region Methods for Parameter Identification
Problems

M. Kartmann1, T. Keil2, M. Ohlberger2, S. Volkwein1, B. Kaltenbacher3
1: Universität Konstanz, Germany
2: Universität Münster, Germany
3: Alpen-Adria-Universität Klagenfurt, Austria

In this talk, we are concerned with model order reduction in the context of iterative regularization
methods for the solution of inverse problems arising from parameter identification in elliptic partial
differential equations. Such methods typically require a large number of forward solutions, which
makes the use of the reduced basis method attractive to reduce computational complexity.

However, the considered inverse problems are typically ill-posed due to their infinite-dimensional
parameter space. Moreover, the infinite-dimensional parameter space makes it impossible to build
and certify classical reduced-order models efficiently in a so-called ”offline phase”. We thus propose a
new algorithm that adaptively builds a reduced parameter space in the online phase. The enrichment
of the reduced parameter space is naturally inherited from the Tikhonov regularization within an
iteratively regularized Gauß-Newton method.

Finally, the adaptive parameter space reduction is combined with a certified reduced basis state space
reduction within an adaptive error-aware trust region framework. Numerical experiments are pre-
sented to show the efficiency of the combined parameter and state space reduction for inverse pa-
rameter identification problems with distributed reaction or diffusion coefficients. More details can
be found in the corresponding preprint [1].
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5.3 A parallel batch greedy algorithm in reduced basis methods: Convergence rates
and numerical results

N. Reich 1,2, K. Urban 1, J. Vorloeper2
1: Institute for Numerical Mathematics, Ulm Universtiy
2: Institute of Natural Sciences, University of Applied Sciences Ruhr West

The classical (weak) greedy algorithm is used within the reduced basis method in order to compute a
reduced basis in the offline training phase. To this end, either the actual error or an a posteriori error
estimator ismaximized and the snapshot corresponding to themaximizer is added to the current basis.

We aim at exploring the potential of parallel computations in the offline phase to obtain some speed-
up in particular in those cases where the snapshot computation is extremely costly. In order to do so,
we introduce a batch size b and add b snapshots to the current basis in every greedy iteration. These
snapshots are computed in parallel.

First, we prove convergence rates for this new batch greedy algorithm for polynomial and exponential
decay of the Kolmogorov width and compare them to those of the classical (weak) greedy algorithm,
[1, 2]. Then, we present numerical results where we apply a (parallel) implementation of the proposed
algorithm to some benchmark problems. We analyze the quality of the final reduced basis, as well as
the offline and online wall-clock times for different batch sizes and show that the proposed variant can,
in fact, be used to speed-up the offline phase.
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5.4 Tensor Krylov subspace methods via the T-product for large Sylvester tensor
equations

Fatima Bouyghf1, Alaa El Ichi2, Mohamed El Guide3
1: LMNO, University of Caen Normandie, France
2: ULCO, France
3: UMIVP, Morocco

The aim of this talk is to present numerical Tensor Krylov subspace methods for solving the Sylvester
tensor equation

M(X ) = C, (4)

where M is a linear operator that could be described as

M(X ) = A ⋆ X − X ⋆ B (5)

where A, X , B and C are three-way tensors leaving the specific dimensions to be defined later, and ⋆
is the T-product introduced by Kilmer and Martin [2].

Consider the following Sylvester matrix equation

AX +XB = C. (6)

In the literature, several methods to solve equation (6) have been established. When matrices are
of small sizes, the well-know direct methods are recommended. These methods are based on Schur
decomposition to transform the original equation into a form that is easily solved by a forward substi-
tution. For large Sylvester matrix equations, iterative projection methods have been developed, see
for example [3,4]. These methods use Galerkin projection methods, such the classical and the block
Arnoldi techniques, to produce low-dimensional Sylvester matrix equations that are solved by using
direct methods.

In the current talk, we are interested in developing robust and fast iterative Krylov subspace methods
via T-product to solve the Sylvester tensor equation STE (17). In fact, when the tensors in equations
(17) are of small sizes, the purpose is to extend matrix version of direct methods to third order tensors
using the T-product formalism. This give us the t-Bartels-Stewart algorithm. For large size tensors, we
describe first a new methods that will be defined as orthogonal and oblique projection onto a tensor
Krylov subspace. In particular, the tensor Full orthogonalizationmethod (tFOM) and tensor generalized
minimal residual method (tGMRES) will be examined. We will also introduce the well-Know tensor
Tubal block Krylov methods via T-product for transforming the original large Sylvester equation to a
low-dimensional STE . In particular, we will describe the Tubal Block Arnoldi (TBA) as a generalization
of the block Arnoldi matrix [5].
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5.5 Adaptive space-timemodel order reductionwith dual-weighted residual (MORe
DWR) error control for poroelasticity

Hendrik Fischer 1,2, Julian Roth 1,2, Ludovic Chamoin 2, Amelie Fau 2, Mary Wheeler 3,
Thomas Wick 1,2

1: Leibniz Universitat Hannover, Institut fur Angewandte Mathematik, Hannover, Germany
2: Universite Paris-Saclay, CentraleSupelec, ENS Paris-Saclay, CNRS, LMPS - Laboratoire de
Mecanique Paris-Saclay, France
3: The University of Texas at Austin, Oden Institute, Austin, USA

In this presentation, the space-timeMORe DWR (Model Order Reduction with Dual-Weighted Residual
error estimates) [4] framework is extended and further developed for single-phase flow problems
in porous media [3]. Specifically, our problem statement is the Biot system [5] which consists of
vector-valued displacements (geomechanics) coupled to a Darcy flow pressure equation. The MORe
DWRmethod introduces a goal-oriented adaptive [2, 1] incremental proper orthogonal decomposition
(POD) based-reduced-order model (ROM). The error in the reduced goal functional is estimated during
the simulation, and the POD basis is enriched on-the-fly if the estimate exceeds a given threshold. This
results in a reduction of the total number of full-order-model solves for the simulation of the porous
medium, a robust estimation of the quantity of interest and well-suited reduced bases for the problem
at hand. We apply a space-time Galerkin discretization with Taylor-Hood elements in space and a
discontinuous Galerkin method with piecewise constant functions in time. The latter is well-known
to be similar to the backward Euler scheme. We demonstrate the efficiency of our method on the
well-known two-dimensional Mandel benchmark and a three-dimensional footing problem.
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5.6 A nonlinear reduced basis approximation of discrete contact problems in crowd
motion

V. Ehrlacher 1,2, G. Sambataro 1,2

1: Cermics, École des Ponts ParisTech, Marne la Vallée Cedex 2, France
2: Inria, MATHERIALS team, Paris, France

In this work we develop new model reduction approaches to predict the solutions of time-
dependent parametrized problems describing crowd motion in the presence of obstacles. The
problem of interest is described by a discrete contact model (DCM) (Ref.[2]): we consider Np
agents identified to rigid disks of radius r and we define the feasibility region for the positions
Q = {q ∈ R2Np s.t.Dij(q) = |qi − qj | − 2r ≥ 0, ∀i < j}, where Dij is the signed distance between disks
i and j.
The DCM problem is formulated as a constrained least-squares optimization statement: the velocity
field is seeked as the projection of the spontaneous velocities of each particle Ui = Ui(q) into a
closed convex cone of admissible velocities:{

dq
dt = PCq(U(q)),
q(0) = q0 ∈ Q,

(7)

where
Cq = {v ∈ R2Np , ∀i < j s.t.Dij(q) = 0 =⇒ ∇Dij(q) · v ≥ 0}.

The parametric variations in the problem are associated to the geometric configuration of the system
(for example, the exit width) and to the initial positions of the particles. Parametric variations have
a dramatic impact in the solution, both in terms of the particles positions and in the contact forces,
which are represented by the Lagrange multipliers of the underling saddle-point problem.

We investigate new developments of the reduced-basis method and supervised machine-learning
techniques to effectively find, in a decorrelated manner, primal and dual reduced spaces. Indeed, for
the DCM of interest, linear approximation methods become ineffective, as outlined by the slow decay
of the Kolmogorov n-width: the combination of a reduced basis technique with nonlinear methods
is promising to achieve a more satisfactory level of accuracy. The reduced basis for the primal vari-
ables is found by a Proper Orthogonal Decomposition (POD), and the basis for the dual variables is
constructed by a cone-projected greedy algorithm that preserves the non-negativity of the dual basis
vectors. As in [1], we perform a non-linear reconstruction (e.g. by Random Forest regression) of re-
duced coordinates from a small number of first coordinates of a linear reduced basis approximation,
in order to achieve a better performance than the linear reconstruction.
To assess the validity of the method, the nonlinear compressive strategy is then compared to more
standard linear and nonlinear approximations.
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5.7 Extending balanced truncation to general domains

A. Borghi 1, T. Breiten1, S. Gugercin2
1: Technical University of Berlin, Mathematics department,10623 Berlin, Germany
2: Virginia Tech, Department of Mathematics and Division of Computational Modeling and Data Ana-
lytics, Academy of Data Science, Blacksburg, VA 24061, USA

Model order reduction aims to alleviate the computational burden of large-scale systems by comput-
ing a lower order surrogate model with approximately the same input-output behaviour. While many
established techniques exist in this field, a substantial amount assumes the underlying model to be
asymptotically stable.

The objective of this work is to extend existing methodologies to linear time invariant systems with
transfer functions having poles in more general domains in the complex plane. In particular, we gen-
eralize the concept of balanced truncation through conformal maps. To this aim, we reformulate the
Gramians of the full order system. We demonstrate that, for particular conformal maps, these Grami-
ans are the solution to Lyapunov equations. Lastly, we show that there exists a bound for a newly
defined H2 norm (see [1]). We propose a balanced-truncation-based algorithm and assess its perfor-
mance against the Schrödinger equation and the wave equation with spectra on the imaginary axis
.
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5.8 H2-optimal model reduction of linear systems with quadratic outputs

Sean Reiter 1, Serkan Gugercin 1, Igor Pontes Duff2, Ion Victor Gosea2
1: Department of Mathematics and Computational Modeling and Data Analytics, Virginia Tech, USA
2: Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany

We consider dynamical systems that are linear in the state equation with a quadratic output term:

Σ :
{

ẋ(t) = Ax(t) + bu(t), y(t) = cT x(t) + x(t)T Mx(t), (8)

where A, M ∈ Rn×n, and b, c ∈ Rn. We assume that M = MT , and that Σ is asymptotically stable, i.e.
λ(A) ⊂ C−. The frequency response of Σ is fully characterized by two rational transfer functions:

H1(s) = cT (sI − A)−1b, H2(s1, s2) = bT (s1I − AT )−1M(s2I − A)−1b. (9)

The H2-norm of such a system (8) is defined as

∥Σ∥2H2
:=

1

2π

∫ ∞

−∞
|H1(iω)|2dω +

1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
|H2(iω1, iω2)|2dω1dω2 (10)

Such systems arise when observing, e.g., the product of time or frequency domain components of
the state [3]. In a large-scale setting (e.g., n ∼ O(106)), repeated simulation of the model (8) poses a
significant computational burden. This motivates the computation of reduced-order models (RoMs):

Σr :
{

ẋr(t) = Arxr(t) + bru(t), yr(t) = cTr xr(t) + xr(t)
T Mrxr(t), (11)

where Ar, Mr ∈ Rr×r, and br, cr ∈ Rr, r ≪ n, and Σr accurately reproduces the response characteris-
tics of (8) in the sense that yr(t) ≈ y(t) for admissible inputs u(t). The error bound [1]

∥y − yr∥L∞ ≤ ∥Σ− Σr∥H2
(∥u∥L2

+ ∥u · u∥L2
) ,

motivates the construction of a RoM Σr as in (11) that approximates Σ well in the H2-norm (10). To
this end, we study theH2-optimal model reduction problem for linear systems with quadratic outputs.
Our significant contributions are twofold: First, we derive first-order necessary conditions forH2 opti-
mality. These conditions amount to rational interpolation ofH1 andH2 in (9) by the transfer functions
of Σr at the mirror images of the poles of Σr, i.e. λ(Ar).

Secondly, we adapt the iterative rational Krylov algorithm [2] as an efficacious approach for computing
locallyH2-optimal reduced-order models as in (11). Numerical experiments validate the effectiveness
of the proposed framework.
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5.9 Finite-Dimensional RHC Control of linear time-varying parabolic Parabolic PDEs:
Stability Analysis and Model-Order Reduction

Behtad Azmi 1, Jan Rohleff 1, Stefan Volkweini1
1: Universität Konstanz

This chapter deals with the stabilization of a class of linear time-varying parabolic partial differential
equations employing reduced receding horizon control (RHC). Here, RHC is finite-dimensional, i.e., it
enters as a time-depending linear combination of finitely many indicator functions whose total sup-
ports cover only a small part of the spatial domain. In detail, we are concerned with the stabilization
of the control system of the form

ẏ(t)− ν∆y(t) + a(t)y(t) +∇ · (b(t)y(t)) =
∑N

i=1 ui(t)1Ri in (0,∞)× Ω,

y = 0 on (0,∞)× ∂Ω,

y(0) = y0 on Ω

(12)

with a time depending control vector u(t) = [u1(t), . . . , uN (t)]⊤ ∈ L2((0,∞);RN ), where Ω ⊂ Rn is a
bounded domain with the smooth boundary ∂Ω and ν > 0. The functions 1Ri

represent the actuators.
They are modeled as the characteristic functions related to open sets Ri ⊂ Ω for i = 1, . . . , N , and
the support of these actuators are contained in a small open subset of the domain Ω. Moreover, the
reaction term a(t) = a(t, x) and convection term b(t) = b(t, x) are, respectively, real- and Rn-valued
functions of real variables t and x. Further, we consider the squared ℓ1-norm as the control cost. This
leads to a nonsmooth infinite-horizon problem which allows a stabilizing optimal control with a low
number of active actuators over time. First, the stabilizability of RHC is investigated. Then, to speed
up numerical computation, the data-driven model order reduction (MOR) approaches are adequately
incorporated within the RHC framework. Numerical experiments are also reported which illustrate the
advantages of MOR approaches.
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5.10 Generalized transfer function approximation for nonlinear MOR

Antonio Carlucci1
1: Dept. of Electronics and Telecommunications, Politecnico di Torino, Italy

This work is concerned with data-driven, non-intrusive reduced modeling of nonlinear systems, us-
ing only input-output (I/O) data that can be easily obtained from evaluation of system responses, i.e.
without accessing a first-principles description (see [2] for relevant previous work). The adopted I/O
representation for the time-invariant system G : u(t) → y(t) is the Volterra series [3], whereby y(t) is
expanded as a sum of repeated convolutions between the input u(t) and the degree-n multidimen-
sional kernels hn(τ1, . . . , τn), so that y(t) =

∑∞
n=1

∫ t

0
hn(τ1, . . . , τn)u(t− τ1) · · ·u(t− τn) dτ1 · · · dτn.

The multidimensional Laplace transform of the degree-n symmetric Volterra kernel hn(τ1, . . . , τn) is
denoted with Hn(s1, . . . , sn) and it generalizes the transfer function concept that is central to linear
systems theory. Samples of these transfer functions can be directly inferred from I/O experiments.

We start from transfer function values H̆n(s(k)n ), where s(k)n = (s
(k)
1 , . . . , s

(k)
n ) and the superscript k refers

to the k-th sample. We look for the best-fitting model with the following bilinear structure

ẋ1 = A1x1 +B1u, ẋn = Anxn +Dnxn−1u, 2 ≤ n ≤ N (13)

and output y(t) =
∑N

n=1 Cnxn(t). The n-th state equation in (13) corresponds to the degree-n ho-
mogeneous subsystem. In order to write the symmetric transfer functions of (13) following [3], let us
introduce sn\si ≜ (s1, . . . , si−1, si+1, . . . , sn), and

X1(s1) = (s1I −A1)
−1B1, Qn(sn) =

∑N
i=1 Xn−1(sn\si), (14a)

Xn(sn) = [(s1 + · · ·+ sn)I −An]
−1

DnQn(sn) , for n ≥ 2. (14b)

With this notation, Hn(sn) = CnXn(sn). The recursion in (14) suggests a greedy approach where N
independent systems are fitted sequentially, starting from (A1, B1, C1), followed by (An, Dn, Cn) for
n = 2 up to n = N . As for n = 1, rational approximation of the samples H̆1(s1) (e.g. via Vector Fitting [4])
yields A1, B1, C1. For n ≥ 2, the key observation is that Qn in (14a) only depends on lower-degree
subsystems, and the model Hn can be written as

Hn(sn) = Fn(s1 + · · ·+ sn)Qn(sn), where Fn(s) = Cn(sI −An)
−1Dn. (15)

This implies that the approximation problem Hn ≈ H̆n can again be tackled through rational fitting to
find a uni-variate rational function Fn(s) that minimizes the error of the approximation

Fn

(
s
(k)
1 + · · ·+ s(k)n

)
Qn

(
s(k)n

)
≈ H̆

(
s(k)n

)
(16)

An extended description including numerical results is in preparation [1].
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5.11 Quadrature-based balanced truncation for quadratic-bilinear systems

Reetish Padhi 1, Ion Victor Gosea 2

1: Indian Institute of Science Education and Research, IISER Pune, India
2: Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany

Quadratic-bilinear (QB) systems are an important class of dynamical systems since many systems are
characterized by such nonlinearities. They are given by the following set of equations

ẋ(t) = Ax(t) + Bu(t) + Nx(t)u(t) + H(x(t)⊗ x(t)),
y(t) = Cx(t).

Balanced truncation (BT) is a classical, established model reduction method that computes balanced
reduced-order models. The authors in [1] extend the definition of Gramian from the linear to the QB
case and use truncated Gramians for QB systems to provide a BT algorithm for such systems. By
writing the Volterra series representation of the system, the time-domain generalized kernels of the
QB system can be derived.

In [2], the authors introduce a non-intrusive data-based balanced truncation method to obtain lower-
order models for linear systems (named QuadBT). They do so by approximating the system Gramians
using quadrature weights and writing all associated quantities as samples of the system kernels. For
the extension of QuadBT to QB systems, we use the definitions given in [1] and follow the original
method in [2] and the recent extension for bilinear systems in [3]. We approximate the reachability
Gramians using quadrature nodes. For example, the components of the reachability Gramian can be
approximated as

P̃1 =

Np∑
i=1

ρ2i e
AµiBB⊤eA⊤µi = Ũ1Ũ⊤

1 , P̃2 =

Np∑
i=1

ρ2i e
AµiNŨ1Ũ1N⊤eA⊤

µi = Ũ2Ũ⊤
2 ,

P̃3 =

Np∑
i=1

ρ2i e
AµiH

(
Ũ1 ⊗ Ũ1

)(
Ũ⊤

1 ⊗ Ũ⊤
1

)
H⊤eA⊤µi = Ũ3Ũ⊤

3 .

We then construct the projection matrices V,W using the SVD of the matrix L̃⊤Ũ. Finally, we re-
place the expression for the reduced order model terms Â, B̂, Ĉ, Ĥ and N̂ in terms of samples of the
time-domain kernels and their derivatives. Extending QuadBT to such systems also allows one to
construct data-driven reduced-order models for a more general class of systems by employing lifting
transforms.
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6 Scientific Program - Day 3

6.1 Model order reduction techniques for the prediction of railway induced vibra-
tion

A. Pashov 1, S. François 1, G. Degrande1
1: KU Leuven, Department of Civil Engineering, Kasteelpark Arenberg 40,3001 Leuven, Belgium

When designing new railway tracks or new buildings in the vicinity of existing railway lines, it is essen-
tial to conduct parametric studies to quantify the impact of design changes. Existing computational
models demand substantial computational effort when predicting the full propagation path from track
to building. Although computational complexity has been reduced by exploiting the geometrical in-
variance of the railway track, studies involving many design parameters are still hindered by the curse
of dimensionality. By applying model order reduction techniques to predict railway induced vibration
in buildings, a computational vademecum of the response is constructed, integrating soil and track
parameters and facilitating fast parametric studies on vibration mitigation.

The objective is to develop a model order reduction method addressing the high-fidelity complex dy-
namic soil-structure interaction problem across a wide frequency range. To tackle this, Proper Gener-
alized Decomposition (PGD) has been employed [1]. The PGD formulation is based on the assumption
of a separable form of the multi-dimensional field. Each contribution therefore consists of a rank-one
tensor that is computed iteratively in a greedy manner. To this end, the PGD formalism is introduced
into the weak form and the resulting non-linear problem is solved using fixed point iterations. Damp-
ing terms result in non-Hermitian properties of the operator, hindering convergence of the standard
Galerkin PGD approach. Therefore, alternative solution strategies, like Petrov-Galerkin based solvers,
are considered [3]. We compare the classical greedy rank one update with a greedy Tucker approxi-
mation method [2].

We elaborate the PGD formulation for three problems with different complexity: a simplified source
model of an Euler-Bernoulli beam on a Winkler foundation; a 2.5D model of a ballast track on a het-
eregenous soil medium,modelledwith finite elements in combinationwith complex frequency-shifted
perfectlymatched layers; and Green’s functions for in-plan (P-SV) and out-of-plane (SH) wave propaga-
tion in a layered halfspace. Apart from the frequency and wavenumber, we take along the foundation
stiffness, ballast and soil properties, or source and receiver positions as coordinates in the PGD for-
mulation. The considered algorithms are compared in terms of convergence, memory requirements,
and CPU time.
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6.2 Proper Orthogonal Decomposition for port-Hamiltonian energy networks

A. Ortegón-Villacorte 1, S.-A. Hauschild 1, N. Marheineke 1

1: Universität Trier

Proper network simulation of flows in gas or water pipes is important when we want to improve
the efficiency of an energy distribution system, for example to save energy or resources. The port-
Hamiltonian framework is applied to the non-isothermal Euler equations in pipe networks. Thanks to
the pH modeling, mass and energy conservation are encoded in the system and appropriate coupling
conditions are used in the ports and pipe connections. The structure of the systemmust be preserved
when new network components are added, such as consumers, producers or compressor stations.
The system is discretized in space preserving the structure of the original pH system. These systems
often require a fine discretization in space to converge to proper results and for this reason a strategy
of model order reduction is useful to significantly reduce the computational cost of the simulation.
Building on previous work [1, 2], we present numerical results for large energy networks where proper
orthogonal decomposition is used for model order reduction.
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6.3 Kernel Trust-Region algorithm for solving optimization problems

Sven Ullmann 1

1: Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Pfaffenwaldring 57,
Stuttgart 70569, Germany

Solving optimization tasks for problems with computationally expensive objective functions often
results in impractical methods. One approach to enhance computational efficiency are so-called
Trust-Region methods. These methods aim to approximate the objective function by a surrogate
model in a region around the current iterate of the algorithm. The surrogate model is intentionally
designed to be more manageable and less intricate than the original objective function that we aim
to optimize.

In this work, kernel functions, which have found widespread use in high-dimensional interpolation
problems [3], are utilized to construct the surrogate model of the objective function [2]. The algo-
rithmic approach for our kernel Trust-Region algorithm is inspired by Algorithm 1 in [1], which uses
gradually enriched Reduced Basis surrogatemodels instead of kernel functions to approximate the ob-
jective function. To establish convergence under reasonable assumptions for the kernel Trust-Region
algorithm, we extend the convergence analysis provided in [4], aligning it with the conditions of the
kernel surrogatemodel. We discuss how to thoughtfully select the interpolation points to construct the
kernel surrogate model, ensuring its capability to adequately approximate both the objective function
and its gradient. Moreover, we conduct a comparative analysis of the optimization outcomes achieved
by the kernel Trust-Region algorithm against state-of-the-art optimization methods, using various nu-
merical examples.
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6.4 Approximating the smallest eigenvalue of large Hermitianmatrices that depend
on parameters

N. Guglielmi 1, M. Manucci2 , E. Mengi 3
1: Gran Sasso Science Institute, Italy
2: University of Stuttgart, Germany
3: Koç University, Turkey

We investigate the efficient and certified approximation of smallest singular value

λmin(µ) := min
v∈CN , |v|=1

v∗A(µ)v, µ ∈ D; (17)

where D is a compact subset of Rp and A(µ) is such that

A(µ) :=

κ∑
l=1

fl(µ)Al (18)

with Al ∈ Cn×n Hermitian matrix and fl : D → R is a real-analytic functions, for l = 1, ..., κ. Being
able to approximate in a fast and reliable way (17) is crucial in projection Model Order Reduction, in
particular for the construction of reduced spaces through greedy algorithms [1].

To deal with this problemwe relay to the subspace framework, see [2], and following what proposed in
[4], we approximate the smallest eigenvalues using a greedy strategy based on efficiently computable
upper and lower bounds of the smallest eigenvalues, i.e.

λLB(µ) ≤ λmin(µ) ≤ λUB(µ).

Our main contributions consists in i) approximating (17) over the uniform parametric domain, by
means of the software EigOpt [3] and ii) showing rigorous global convergence of the method under
suitable assumptions. We also propose an heuristic strategy to deal with non-Hermitian matrices in
(18). Finally, we show through several numerical test examples that the proposed method is efficient
and reliable in approximating (17).
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6.5 The Kolmogorov N -width for linear transport: Exact representation and the in-
fluence of the data

Florian Arbes 1, Constantin Greif 2, Karsten Urban2
1: IFE, Institute for Energy Technology, Instituttveien 18, 2007 Kjeller (Norway)
2: Ulm University, Institute of Numerical Mathematics, Helmholtzstr. 20, 89081 Ulm (Germany)

The Kolmogorov N -width describes the best possible error one can achieve by elements of an N -
dimensional linear space. Its decay has extensively been studied in Approximation Theory and for
the solution of Partial Differential Equations (PDEs). Particular interest has occurred within Model
Order Reduction (MOR) of parameterized PDEs e.g. by the Reduced Basis Method (RBM).

While it is known that theN -width decays exponentially fast (and thus admits efficientMOR) for certain
problems, there are examples of the linear transport and the wave equation, where the decay rate
deteriorates to N−1/2. On the other hand, it is widely accepted that a smooth parameter dependence
admits a fast decay of the N -width. However, a detailed analysis of the influence of properties of the
data (such as regularity or slope) on the rate of the N -width seems to lack.

In this paper, we use techniques from Fourier Analysis to derive exact representations of the N -width
in terms of initial and boundary conditions of the linear transport equation modeled by some function
g for half-wave symmetric data. For arbitrary functions g, we derive bounds and prove that these
bounds are sharp. In particular, we prove that theN -width decays as crN−r for functions with Sobolev
regularity g ∈ Hr−ε for all ε > 0 even if g ̸∈ Hr. Our theoretical investigations are complemented by
numerical experiments which confirm the sharpness of our bounds and give additional quantitative
insight.
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6.6 Active Subspace Methods for Parametrized Partial Differential Equations

N. Hornischer 1,2, N. Shah 2, G. Wells 2, D. Göddeke1,3
1: Stuttgart Center for Simulation Science (SC SimTech), University of Stuttgart, Germany
2: Department of Engineering, University of Cambridge, United Kingdom
3: Institute for Applied Analysis and Numerical Simulation (IANS), University of Stuttgart, Germany

Conducting parameter studies in science and engineering often necessitates computationally inten-
sive simulations to model complex processes. However, classical parameter studies become infeasi-
ble when faced with high-dimensional parameter spaces due to limited computational resources and
the curse of dimensionality. To reduce the complexity of these parameter studies, model order reduc-
tion techniques provide a promising workaround. These techniques often require multiple snapshots
representing the full parameter space, in order to construct the reduced basis. However, selecting
useful snapshots from the parameter space is a non-trivial task since the number of snapshots should
be kept as low as possible to reduce the computational costs, while still capturing the relevant infor-
mation in the parameter space.

Active subspace methods offer a relatively new approach to dimension reduction, aiming to identify
significant directions within the parameter space [3]. These key directions of the parameter space can
be used directly in the parameter study to only explore the most relevant directions, or to select the
most informative snapshots for the construction of the reduced basis.

However, applying active subspace methods directly to complex simulation models, especially within
active simulation platforms, presents challenges. We present an easy-to-use framework tailored for
models involving parametric partial differential equations on the FEniCSx computing platform [2, 4, 1].
In that way, we aim to provide tools to analyze the usability of the active subspace methods for given
problems and basic functionality to construct the active subspace. This talk provides an overview
of active subspace methods, providing the mathematical background and the necessary details to
use the framework. We demonstrate the capabilities of the framework by applying the method to a
multivariate quadratic model and a parametrized Stokes equation.
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7.1 Frequency-Domain Based Learning of Dynamical Systems from Purely Time-
Domain Data

M. S. Ackermann1, S. Gugercin1,2
1: Department of Mathematics, Virginia Tech, Blacksburg, 24061, VA, United States
2: Division of Computational Modeling and Data Analytics, Academy of Data Science, Virginia Tech,
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Frequency-based reduced order modeling techniques have been very successful in creating high-
fidelity reduced order models (ROMs). Here, we consider the discrete-time, single-input single-output
system

S :

{
x[k + 1] = Ax[k] + bu[k]
y[k + 1] = c⊤x[k],

(19)

with transfer function
H(z) = c⊤(zI − A)−1b, (20)

where A ∈(β) Rn×n, b ∈(β) Rn, and c ∈(β) Rn. The goal of frequency-based reduced order modeling
is to well-approximate the transfer function (20) in some sense (such as the H2 norm). Classically,
frequency-based ROMs are obtained intrusively by projecting the system matrices in (19) to smaller
system matrices: Ar ∈(β) Rr×r, br ∈(β) Rr, and cr ∈(β) Rr. An example of such a technique is the Iter-
ative Rational Krylov Algorithm (IRKA) [3], which computes locallyH2 optimal ROMs. Recently, many
of these classical techniques have been formulated in a data-driven framework, where one assumes
access to {H(σi)}mi=1, the values of (20) at {σi}mi=1 ⊂(β) C (and sometimes its derivative) and produces
reduced system matrices directly from data. IRKA is one such method; the realization independent
iterative rational Krylov algorithm (TF-IRKA) [1] only requires values and derivatives of (20). However,
in practical settings it can be difficult to obtain frequency data H(σ); one may only have time-domain
data from (19)

(β)U = [u[0] . . . u[T ]] ∈(β) RT+1 and (β)Y = [y[0] . . . y[T ]] ∈(β) RT+1.

In [2], the authors present amethod to calculate frequency dataH(σ) from time-domain data (β)U,(β) Y .
However, due to numerical ill-conditioning and an assumption that the system order n is known, the
method faces challenges when applied to large-scale dynamical systems. First, we provide the nec-
essary analysis to increase the robustness of the framework in [2] for large-scale dynamical systems,
while assuming access to only a single time-domain input-output trajectory. This analysis also leads to
an error indicator that accurately predicts the relative error in recovered frequency data. We illustrate
that the frequency information we recover can be used in established frequency domain data-driven
techniques by demonstrating a time-domain variant of TF-IRKA which constructs locally H2 optimal
ROMs of large-scale dynamical systems from only a single time-domain simulation of (19).
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7.2 Reformulation of the data assimilation problem as a new foundation for model
order reduction methods

J. Marquardt 1, C. Gräßle 1

1: Institut für Partielle Differentialgleichungen, TU Braunschweig

The goal of data assimilation is to update a mathematical model with observations from the real
world. In 4D-var data assimilation, the observations yi ∈ Rdobs for 0 ≤ i ≤ N are taken at multiple
time instances 0 = t0 < ... < tN = T < ∞. The current state of the model at time ti is given by
xi ∈ Rd. The forward evolution of the model is governed by some dynamics Mi : Rd → Rd such that
xi+1 = Mi(xi). A connection between the states and observations may be realised by observation
operators Hi : Rd → Rdobs . In order to match the model prediction with the observation, the initial
state x0 can be chosen as a solution of

argmin
x0∈Rd

{
J(x0) :=

1

2

N∑
i=0

∥Hi(xi)− yi∥2Rdobs +
α

2

∥∥∥x0 − x
(b)
0

∥∥∥2
Rd

}
, (21a)

subject to
xi+1 = Mi(xi) ∀i ∈ {0, ..., N − 1} (21b)

with initial guess x
(b)
0 and trust coefficient α > 0, which describes how much confidence can be put

into x
(b)
0 compared to the measurements yi. The usual solution techniques such as variants of the

Gauss-Newton method and different versions of Kalman filters all require the numerical treatment of
large systems. Therefore, it is not surprising that the search for reduced order models is a focus of
various researches (for an overviewof data assimilation andmodel order reduction techniques see [2]).

In this talk, a reformulation of data assimilation problems governed by a parabolic partial differential
equation (pde) will be presented. This reformulation allows to find the solution of the optimisation
problem (21) by solving a fourth order elliptic pde with i.e. finite elements. The idea which motivated
the transition between these problems has already been successfully used by other authors in differ-
ent contexts (i.e. [1, 3]). It involves the interpretation of (21) as an optimal control problem and the
utilisation of the arising optimality conditions in order to establish the fourth order system.

Switching from an optimisation problem to the discretisation of a pde now allows to investigate the
possibilities of model order reduction from a new angle. While the author will present the outcome
of some first model order reduction attempts such as the proper orthogonal decomposition for the
systemmatrices, he also seeks the discussion and exchange of ideas coming from different directions
with other participants of the YMMOR conference.
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7.3 Model Order Reduction Techniques for Multiscale Systems

Fan Wang 1,2
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The problem of model reduction in multiscale systems arises, e.g., in climate dynamics. Climate
dynamics blend multiscale data, including multilayers of atmosphere and hydrosphere. Although
in a high-fidelity model, it is difficult to track all data but large-scale data. Thus a model of unre-
solved/unmeasured parts of the dynamical system is important to forecast the weather accurately.
Moreover, subgrid modeling plays an important role in turbulence modeling in the fluid dynamics
community.

Recent approaches call on Neural Ordinary Differential Equations (NODE) [1] as a continuous case
of well-known ResNet, to fit the dynamical systems together with ODE solvers. Inspired by NODE,
the Universal Differential Equations (UDE) [5] framework successfully integrates unresolved scales /
subgrid scales with the solved scales. Apart from UDE, Empirical Model Reduction (EMR) [3, 4] is a
numerical algorithm to model multiscale problems.

In thiswork, we try to find the similarity between EMRandDMD/Koopman [2], then use DMD/Koopman
together with Neural Networks (NN) to guide the modeling of the multiscale problems. The challenge
is that “traditional”MORmethods like DMD/Koopman assume fully observed data and then reduce the
full dimension n to reduced dimension r by some optimization algorithms. On the contrary, EMR is a
method to deal with partially observed/measured systems with solved dimension r′ which is generally
not optimized for a full model with dimension n.

References

[1] Ricky T. Q. Chen et al. “Neural Ordinary Differential Equations”. In: Proceedings of the 32nd Inter-
national Conference on Neural Information Processing Systems. NIPS’18. Montréal, Canada: Curran
Associates Inc., 2018, pp. 6572–6583.

[2] Manuel Gutiérrez Santos et al. “Reduced-order models for coupled dynamical systems: Data-
driven methods and the Koopman operator”. In: Chaos: An Interdisciplinary Journal of Nonlinear
Science 31.5 (2021), p. 053116. issn: 1054-1500. doi: 10.1063/5.0039496.

[3] D. Kondrashov et al. “A Hierarchy of Data-Based ENSOModels”. In: Journal of Climate 18.21 (2005),
pp. 4425–4444. doi: https://doi.org/10.1175/JCLI3567.1.

[4] S. Kravtsov, D. Kondrashov, and M. Ghil. “Multilevel Regression Modeling of Nonlinear Pro-
cesses: Derivation and Applications to Climatic Variability”. In: Journal of Climate 18.21 (2005),
pp. 4404–4424. doi: https://doi.org/10.1175/JCLI3544.1.

[5] Christopher Rackauckas et al. “Universal Differential Equations for Scientific Machine Learning”.
In: CoRR abs/2001.04385 (2020). arXiv: 2001.04385.

33

https://doi.org/10.1063/5.0039496
https://doi.org/https://doi.org/10.1175/JCLI3567.1
https://doi.org/https://doi.org/10.1175/JCLI3544.1
https://arxiv.org/abs/2001.04385


3rd YMMOR Conference, March 4-8, 2024

7.4 An Optimisation–Based Fully Segregated Reduced Order Model for Fluid Struc-
ture Interaction Problems

I. Prusak1, D. Torlo1, M. Nonino2, G. Rozza1
1: SISSA, Mathematics Area, mathLab
2: University of Vienna, Department of Mathematics

Even though there has been extensive research in computational methods for solving Fluid–Structure
interaction (FSI) problems in the last decades, a comprehensive presentation from a mathematical
point of view is still missing nowadays: one of the reasons for this is the fact that the two subprob-
lems, namely the Navier–Stokes equation and the elastic solid equation, are two big mathematical
challenges on their own. FSI problems describe the dynamic interplay between a fluid and a solid.
This interplay takes place because of the coupling of the two different physics at the FSI interface,
namely the part of the physical domain that is common to the fluid subdomain and the solid subdo-
main. The FSI interface profile is unknown a priori and depends on the dynamics of the fluid and the
structure problem.

Classically, there are two different approaches to solving an FSI problem: a partitioned (or segregated)
procedure and a monolithic procedure. The idea behind partitioned algorithms is to try to combine
available well–developed computational tools for fluid dynamics and structural dynamics and couple
them with some iterative procedure. On the other hand, in monolithic algorithms, the fluid and the
solid problem are solved simultaneously.

Ourwork aims to introduce a frameworkwhere Domain Decomposition (DD) algorithms and Reduced–
Order Models (ROMs) are combined to achieve better performance of numerical simulations. We
choose to model the DD using an optimisation approach (see, for instance, [2]) to ensure the coupling
of the interface conditions between fluid and structure subdomains and it leads to a complete sepa-
ration of the solvers on the subdomains. The snapshots for the high–fidelity model are obtained with
the Finite Element (FE) discretisation, and the model order reduction is then proposed both in terms
of time and physical parameters with a standard Proper Orthogonal Decomposition (POD)–Galerkin
projection.

Although the partitioned approach is more attractive because of its computational efficiency, it might
lead to unstable algorithms, under some physical and geometrical conditions, while the monolithic
approach does not suffer from this issue. This happens, for example, if the physical domain has a
slender shape, or, as in our numerical test, if the fluid density is close to the solid density, and this
is usually the case in haemodynamics applications, where the density of the blood is quite close to
the density of the walls of the vessel. This phenomenon is the so–called “added mass” effect; see,
for instance, [1] for a detailed derivation of the “added mass” effect and related consequences. The
approach undertaken in our work leads to a fully–segregated algorithm which is nevertheless stable
under the “added mass” effect. It is evidenced by the numerical experiments of the model presented
for a two–dimensional haemodynamics benchmark FSI problem.
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7.5 Reduced order models for cardiovascular flows
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2: University of Houston, Department of Mathematics, 3551 Cullen Blvd, 77204, Houston TX, USA

Heart disease represents one of the leading causes of deathworldwide, thus several research areas pay
particular attention to cardiovascular disorders. The formulation of mathematical models dedicated to
patient-specific cases [4] or appropriate benchmarks [2] can be useful to analyse the blood perfusion
in critical areas. In this work, features commonly encountered in the vascular system and medical
devices, such as flow contraction, expansion, recirculation zones are studied through a Reduced Order
Model (ROM) in the Food and Drug Administration (FDA) nozzle benchmark.

The incompressible Navier-Stokes equations represent the mathematical model employed at the full
order level, where space-dependent boundary conditions are imposed for the inlet velocity. High
Reynolds numbers are taken into account and the finite volume method is adopted to find the full
order solutions in a large eddies simulation approach. The features of the mesh, the discretization
parameters and the numerical schemes to obtain proper results are taken from [2].

A Proper Orthogonal Decomposition (POD)with Galerkin projection is implemented in the ROM frame-
work. The lifting function method is adopted to introduce non-homogeneous Dirichlet boundary con-
ditions at reduced level [1]. For a turbulent flow treated with a large eddies simulation approach, one
of the main sources of errors is the truncation of the modes. Therefore, stabilization methods to prop-
erly recover neglected data are introduced. The first consists of an additional global constant viscosity
(constant kernel) in the reduced model formulation. A comparison is performed with a linear kernel
approach where the amount of added viscosity is modified for each mode [3].

Several analyses are performed as the number of modes and the added viscosity change. Qualita-
tive and quantitative comparisons are carried out for mean pressure and velocity by reaching good
agreements between FOM and ROM solutions.
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7.6 Model Order Reduction for Partitioned Linear FSI Systems

L. Frie 1, P. Eberhard 1

1: Institute of Engineering and Computational Mechanics, University of Stuttgart, Germany

For the simulative analysis of many systems, different physical domains have to be considered. One
example is the frequently occurring fluid-structure interaction (FSI). Systems, where FSI is very im-
portant are various. Two examples that are considered in this talk are a classical guitar and the very
complex system of a helicopter in flight. In both systems, the different physical domains, i.e. struc-
ture and air, influence each other significantly and, thus, both have to be simulated in an interacting
coupling framework. These coupling frameworks are divided into monolithic coupling and its coun-
terpart, the partitioned methods or non-monolithic coupling. The non-monolithic coupling has the
advantage that specially adapted solvers can be used for each subsystem and that different working
groups can work on each different subsystem separately [2, 3].

For the modeling of mechanical systems, the finite element method is frequently used. To achieve an
adequate description of complex systems, however, a fine discretization in space is necessary leading
to very high-dimensional systems of differential equations. In order to still enable efficient and effec-
tive simulations, model order reduction (MOR) is essential. By coupling the different domains, the
individual subsystems often have numerous inputs and outputs through which forces are exchanged
over the common interaction surface. This is a special challenge for many MOR approaches, though.
Furthermore, not only a good approximation of the full-system states is important, but also the ap-
proximation of their derivatives. This is because the derivatives are used to compute the forces that
act on the complement subsystem.

In this talk, projection-based MOR using Krylov subspaces is used to reduce the structural part of the
FSI system. It is shown that a good approximation of states does not necessarily lead to good ap-
proximations of the interaction forces. Different advancements in moment matching, e.g. ESVDMOR
[1], are reviewed for use with systems that have numerous inputs, and are enhanced for the present
use case. Their functionality is shown with the two above-mentioned examples. The classical guitar
has the advantage that also the used full-order model has a moderate size and can be evaluated to
receive a reference solution. The application to the helicopter model demonstrates the suitability for
very large and very complex systems.

References

[1] Peter Benner and André Schneider. “On Stability, Passivity and Reciprocity Preservation of ES-
VDMOR”. In: Model Reduction for Circuit Simulation. Ed. by P. Benner, M. Hinze, and E. Jan W. ter
Maten. Dordrecht: Springer, 2011, pp. 277–288. doi: 10.1007/978-94-007-0089-5.

[2] Ulrich Schäferlein.Numerical Investigation of Aeroacoustic and Aeroelastic Phenomena on a Helicopter
Using Higher-Order Methods. Verlag Dr. Hut, 2018.

[3] Benjamin Uekermann, Bernhard Gatzhammer, and Miriam Mehl. “Coupling Algorithms for Parti-
tioned Multi-Physics Simulations”. In: Lecture Notes in Informatics (LNI), Proceedings - Series of the
Gesellschaft für Informatik (GI). Vol. 44. Stuttgart, Germany, 2014, pp. 113–124.

36

https://doi.org/10.1007/978-94-007-0089-5


3rd YMMOR Conference, March 4-8, 2024

7.7 Structure-preserving model order reduction and error analysis of port-
Hamiltonian systems
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The modeling of modern technical systems typically includes the consideration of different physical
domains to represent a realistic behavior. The method of port-Hamiltonian (pH) systems manages
to describe such systems in a unified framework by defining the energy as the lingua franca between
the involved subsystems [3]. High-dimensional systems result from the spatial discretization
of these models, leading to computationally demanding simulations and making model order
reduction (MOR) techniques indispensable to allow for real-time scenarios or multi-query simulations.

Port-Hamiltonian systems fulfill the useful properties of passivity, stability and modularity, which
are worth maintaining through structure-preserving reduction even in reduced space. Usually, the
reduction introduces an approximation error. Error estimation approaches help to build confidence
in the reduced model and can be used to work on adaptive basis generation, e.g. greedy algorithms,
to improve the projection basis iteratively.

The authors present a sensitivity analysis of different structure-preserving projection and basis gener-
ation methods for the reduction of linear port-Hamiltonian systems [2]. Based on this, residual-based
error estimators are adapted to the pH systems and the error overestimation is reduced by using linear
auxiliary problems [1]. The methods are illustrated using a coupled fluid-structure interaction model
of a classical guitar.
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7.8 Wasserstein-VAEs in Monte Carlo Simulations
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Uncertainty Qualification in Partial Differential Equations (PDEs) tries to approximate the probabil-
ity distribution of the PDE solution given the uncertainty on the data. This is typically addressed by
the method that requires a large number of simulations, called the Monte Carlo (MC) ensemble. MC
method is a common quadrature strategy and can be used effectively to approximate the moments
(e.g., mean and variance) of the PDE solution. The computational cost of building the MC ensemble
can be prohibitively large for real-world application and tools for reducing this effort must be devel-
oped.

In this talk we will discuss several aspects of a promising approach in this direction, which is the use
of Deep Learning - based methods to generate data that resemble the unknown distribution, such as
Generative Adversarial Networks (GANs) [2] and Variational Auto Encoders (VAEs) [3], and use them
to approximate the MC estimations cheaply and without requiring any full model solution after the
training of the model.

Nevertheless, these techniques are usually based on the estimation of appropriate distances between
distributions. Typically, the Kullback-Leibler and Jensen-Shannon divergences [1] are used. Unfortu-
nately, often these distances are unable to detect important differences between distributions, lead-
ing to loss of accuracy in the final approximation. To address this issue, we investigate the use in
this setting of VAEs based on the Wasserstein distance (Wasserstein-VAE), which has the potential to
overcome the limitations of the existing approaches. We expect the uses of this distance to be espe-
cially important when dealing with PDEs whose solutions display peculiar features, such as shocks or
discontinuities.

References

[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein generative adversarial net-
works”. In: International conference on machine learning. PMLR. 2017, pp. 214–223.

[2] Ian Goodfellow et al. “Generative Adversarial Nets”. In: Advances in Neural Information Processing
Systems. Ed. by Z. Ghahramani et al. Vol. 27. Curran Associates, Inc., 2014.

[3] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In: 2nd International Con-
ference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track
Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2014.

38



3rd YMMOR Conference, March 4-8, 2024

7.9 Data-driven and Low-rank Implementations of the Generalized Singular Pertur-
bation Algorithm
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The Balanced Generalized Singular Perturbation Algorithm (GSPA) [6] is a classic model order reduc-
tion method for linear time-invariant systems with an a priori error bound. The connection between
GSPA and Balanced Truncation (BT) in the form of a Möbius transformation [1] is long known and has
been employed to derive theoretical properties of GSPA-reducedmodels and to prove aforementioned
error bounds [1, 4]. Recently, the relationship of the Singular Perturbation Algorithm (SPA) [2] and BT
via a reciprocal transformation was exploited to enable new algorithmic strategies for low-rank and
data-driven approaches for the method [5].

BT is a staple of the model order reduction community and can be conceived of as a special case of
GSPA; a connection that is seldomly mentioned the literature, e.g. in review papers. We will show
that the new algorithmic results for SPA extend naturally to GSPA and present numerical examples
of low-rank and data-driven implementations. The low-rank version is realized by following the algo-
rithmic counterparts of BT with the additional expense of solving a least-squares problem of reduced
order. The data-driven implementation uses the QuadBT framework [3] which bases on an approxi-
mation of the system gramians via numerical quadrature. Furhtermore, we will look briefly at possible
connections that arise to frequency-weighted model order reduction and discretization schemes.
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7.10 Stabilised Dynamical Low Rank Methods for random Advection-Dominated
Problems
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The efficient and accurate simulation of random unsteady advection-dominated problems in a multi-
query context is challenging.

On the one hand, those problems are not amenable to the POD paradigm. While the solutionmay at all
times exhibit a low-rank structure, the subspaces capturing that structure can vary significantly over
time. The Dynamical Low Rank framework can be an interesting alternative, in which we approximate

u(t, x, ξ) ≈
R∑
i=1

Ui(t, x)Yi(t, ξ).

Thismethod can be understood as a Reduced Basismethodwith the peculiarity that both bases (called
physical modes {Ui}Ri=1 and stochastic modes {Yi}Ri=1 in this context) are time-dependent. The aim is
consequently to track a (quasi-)optimal approximation of the best rank-R approximation over time.

On the other hand, the use of the standard Finite Element method is also problematic as the numerical
solutions thus obtained display oscillations. These numerical artifacts are unphysical and must be
removed or at least alleviated. To tackle this, we introduce a framework of stabilised Dynamical Low
Rank methods. The framework naturally integrates any stabilisation technique that is expressed as a
generalised Petrov-Galerkin method for a time-dependent problem. The streamline Upwind/Petrov-
Galerkin and Interior Penalty methods fall into this category. A family of time-stepping algorithms is
introduced and their properties analysed. Under certain assumptions, the stabilised DLR method is
shown to inherit the properties of the stabilised full-ordermodel. Numerical experiments will illustrate
the effectiveness of the stabilising methods.
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8 Scientific Program - Day 5

8.1 Sequential nonlinear dimension reduction using gradient evaluations
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Our goal is to approximate a differentiable function u : Rd → R, d ≫ 1, by a composition of functions
f ◦ g where g : Rd → Rm and f : Rm → R. The approximation error is assessed in the L2

µ-norm where
µ is some probability measure on Rd. First the feature map g is selected among some prescribed
functional class by minimizing an upper bound of the approximation error based on evaluations of
∇u. Then the function f is built using classical regression methods.

If g is taken linear, this problem has been extensively studied under the name Active Subspace, see
for example [2]. This approach is easy to implement, computationally efficient, has robust theoretical
guarantees for some classical probability laws µ, and showed good performances in various numerical
applications. However, there are many functions u for which such an approximation with m < d is
known to be not efficient.

Therefore, recent works consider non-linear feature maps in order to produce better dimension re-
duction. More especially, we will focus on the work from [1], where for a fixed mapping ϕ : Rd → RK ,
K ≥ d, they consider g as a function of the form g(x) = ATϕ(x) with A ∈ RK×m. Although the-
oretical guarantees require more restrictive assumptions, numerical experiments showed improved
performances compared with linear featuring, even when the assumptions were not satisfied.

Our goal is to find a sequential approach to build a good mapping ϕ. While [1] also considered this
approach using a greedy algorithm, we will consider an approach for constructing a more structured
map ϕ.
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8.2 Enhancing Non-intrusive Reduced Order Methods with Space-dependent Ag-
gregation Models

A. Ivagnes1, N. Tonicello1, P. Cinnella2, G. Rozza1
1: International School of Advanced Studies SISSA, Trieste, 34136
2: Institut Jean Le Rond D’Alembert, Sorbonne University, Paris, 75252

The novelty of the present contribution is the exploitation of space-dependent aggregation
techniques [3] to combine different data-driven Reduced Order Models (ROMs) [1]. The prediction
of the model-mixture formulation, the mixed-ROM, consists in a convex linear combination of the
predictions of some previously-trained non-intrusive ROMs, where we assign a space-dependent
weight to each model.

The ROMs taken into account to build the mixture model exploit different reduction techniques, both
linear –the Proper Orthogonal Decomposition (POD)– and non-linear –an Auto-Encoder (AE)– and/or
different approximation techniques, including interpolation –Radial Basis Function Interpolation
(RBF)– or regression techniques –a Gaussian Process Regression (GPR) or a feed-forward neural
network [2]. The contribution of each model is retained with higher weights in the regions where
the model performs best, and, vice versa, with small weights where the model has a lower accuracy
with respect to the other models. Finally, a machine learning technique, namely a Random Forest, is
exploited to infer the weights for unseen parameters.

The performance of the aggregated model is evaluated on the parametric test case of the 2D flow
past an airfoil, considering as parameters the angle of attack and/or the Reynolds number. In this
test case, the mixed-ROM provided improved accuracy with respect to the standard ROM techniques,
while providing an estimate for the predictive uncertainty.
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8.3 Combining a priori model order reduction and Lagrangian fluid solvers with
moving meshes

Max Beckermann 1, Andrea Barbarulo 1, Massimilano Cremonesi2
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The Particle Finite Element method is a fluid solver based on Lagrangian finite elements combined
with efficient re-meshing algorithms [2]. It was shown to be effective in a large amount of
applications, especially in the case of free surface fluids flows or fluid-structure interactions as the
different interfaces are intrinsically dealt with within the method. Up to now, this method has never
been paired up with any model-order reduction technique because of the difficulties linked to the
re-meshing schemes. This remains however, an important area of research to uncover as it could
drastically reduce the computational cost of the method.

In this work, we focus on an a priori reduction method called Proper Generalized Decomposition
(PGD) [1] with a space-time decomposition. Contrary to the a posteriori family of reduced order
modelling techniques the PGD does not require any knowledge of past solutions. The reduced
solution is instead built iteratively solving several problems of lower dimension. This technique
has been used extensively over the years and has been given a solid mathematical framework [4].
In fluid dynamics, PGD was used in the context of Eulerian finite element fluid solvers [3] but the
performance improvement was limited by the non-linear convective term. This justifies the hopes we
have to be able to solve higher convective cases with a Lagrangian description of motion, in which
the convective term vanishes entirely.

The PGD formulation requires a complete time integration of all points of our system. To be able to
deal with moving mesh and remeshing, a new expanded formulation is introduced. This formulation
extends the degrees of freedom to all particles that have existed throughout our simulation. Particular
efforts have to be made to ensure both correct mesh and solution interpolation at the re-meshing
instances and adequate update of themesh after every newmode calculation. The proposed technique
has been validated with simple tests showing very promising results.
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8.4 Be greedy and learn: efficient and certified algorithms for parametrized optimal
control problems
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In this talk we consider parametrized linear-quadratic optimal control problems and provide their
online-efficient solutions by combining greedy reduced basis methods and machine learning algo-
rithms [2]. To this end, we first extend the greedy control algorithm [3], which builds a reduced basis
for the manifold of optimal final time adjoint states, to the setting where the objective functional con-
sists of a penalty term measuring the deviation from a desired state and a term describing the control
energy. Afterwards, we apply machine learning surrogates to accelerate the online evaluation of the
reduced model by approximating the map from parameter to coefficients with respect to the reduced
basis [1]. The error estimates proven for the greedy procedure are further transferred to the machine
learning models and thus allow for efficient a posteriori error certification. We show by means of
numerical examples the potential of the proposed methodology.
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8.5 Optimizing Groundwater Heat Pump Placement: Extending Heat Plumes with
CNNs and PINNs

J. Pelzer 1, L. Piller 1, M. Schulte1, D. Pflüger1
1: Institute for Parallel and Distributed Systems, Universität Stuttgart, 70569 Stuttgart, Germany

Part 1: Unlocking the full potential of groundwater heat pump deployment in a given region presents
a fascinating challenge, demanding a good understanding of the specific groundwater flow dynamics
to model the formation of heat plumes and their interactions. This talk presents an extended two-
stage learning strategy to model the groundwater flow with the goal of optimizing the placement of
additional heat pumps at the example of the metropolitan region of Munich. For practical use in the
field, this has to be orders of magnitude more efficient than classical simulations.

The first stage involves the prediction of standard-shaped heat plumes such as in Fig. 1 within realis-
tic subsurface parameter ranges, achieved through the utilization of a Convolutional Neural Network
(CNN) trained on simulations. In the second stage, another CNN adjusts the temperature field of this
independent plume based on its interaction with neighboring plumes, see Fig. 2.
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Figure 1: First stage, single heat pump predictions. Exemplary data point: heat plume of one heat pump in one box. Thin
line: isoline of 1°C-difference.
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Figure 1: 1st stage: predict one heat plume.

Figure 2: 2nd stage: learn interaction with neighboring heat plumes.

Part 2. However, a novel challenge arises after the first stage. Depending on the subsurface property
input-combinations, heat plumes can assume arbitrary lengths, necessitating either excessively large
simulations or extending predicted plumes. Here, we introduce a physics-informed machine learning
method to extend heat plumes. Our goal is to minimize the number of expensive simulations required
as training data, while covering rare scenarios such as extremely long heat plumes.

Introducing a pragmatic methodology in Fig. 3, we segment datasets by cutting the label (temperature
field) into rectangles. The first rectangles’s temperature field (containing the origin of a heat pump)
is then forecasted using CNNs (see initial first stage), based on subsurface input properties. Follow-
ing this, we extend the heat plume until its ends using a Physics-Informed Neural Network (PINN)
combined with a classical data loss. This streamlined approach not only enhances computational
efficiency but also paves the way for extrapolating plumes with minimal data requirements.

Figure 3: Approach to extend the plumes in two steps.
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